MV¶
- class MV(answers, n_classes=2, sparse=False, **kwargs)¶
Majority voting¶
Most answered label per task
- __init__(answers, n_classes=2, sparse=False, **kwargs)¶
Majority voting strategy: most answered label
\[\mathrm{MV}(i, \mathcal{D}) = \underset{k\in[K]}{\mathrm{argmax}} \sum_{j\in\mathcal{A}(x_i)}\mathbf{1}(y_i^{(j)} = k)\]- Parameters:
answers (dict) –
Dictionary of workers answers with format
{ task0: {worker0: label, worker1: label}, task1: {worker1: label} }
sparse (bool, optional) – If the number of workers/tasks/label is large (\(>10^{6}\) for at least one), use sparse=True to run per task
n_classes (int, optional) – Number of possible classes, defaults to 2
- compute_baseline()¶
Compute label frequency per task
- get_answers()¶
Get labels obtained with majority voting aggregation
- Returns:
Most answered labels per task
- Return type:
- get_probas()¶
Get labels obtained with majority voting aggregation
- Returns:
Most answered labels per task
- Return type: