WDS¶
- class WDS(answers, n_classes=2, **kwargs)¶
WDS: Weighted Distribution from Dawid and Skene¶
Use the diagonal of the confusion matrix from DS model to weight the label frequency for each worker.
- __init__(answers, n_classes=2, **kwargs)¶
Weighted Majority Vote from DS confusion matrices diagonal.
\[\mathrm{WDS}(i, \mathcal{D}) = \underset{k\in[K]}{\mathrm{argmax}} \sum_{j\in\mathcal{A}(x_i)}\pi_{k,k}^{(j)}\mathbf{1}(y_i^{(j)} = k)\]
- run()¶
Run DS model to get confusion matrices
- get_probas()¶
Get soft labels distribution for each task
- Returns:
Weighted label frequency for each task
- Return type:
numpy.ndarray(n_task, n_classes)
- get_answers()¶
Argmax of soft labels, in this case corresponds to a majority vote
- Returns:
Hard labels (majority vote)
- Return type: